Gaussian Hypergeometric Series and Extensions of Supercongruences

نویسنده

  • ROBERT OSBURN
چکیده

Let p be an odd prime. The purpose of this paper is to refine methods of Ahlgren and Ono [2] and Kilbourn [13] in order to prove a general mod p congruence for the Gaussian hypergeometric series n+1Fn(λ) where n is an odd positive integer. As a result, we extend three recent supercongruences. The first is a result of Ono and Ahlgren [2] on a supercongruence for Apéry numbers which was conjectured by Beukers in 1987. The second is one of Mortenson [18] which relates truncated hypergeometric series to the number of Fp points of some family of Calabi-Yau manifolds. Finally, the third is a result of Loh and Rhodes [16] on congruences between coefficients of modular forms corresponding to a particular class of elliptic curves and combinatorial objects. Additionally, we discuss the non-trivial methods of the computer summation package Sigma which were used to find explicit evaluations of two strange combinatorial identities involving generalized Harmonic sums.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Hypergeometric series and supercongruences

Let p be an odd prime. In 1984, Greene introduced the notion of hypergeometric functions over finite fields. Special values of these functions have been of interest as they are related to the number of Fp points on algebraic varieties and to Fourier coefficients of modular forms. In this paper, we explicitly determine these functions modulo higher powers of p and discuss an application to super...

متن کامل

Hypergeometric Series and Periods of Elliptic Curves

In [7], Greene introduced the notion of general hypergeometric series over finite fields or Gaussian hypergeometric series, which are analogous to classical hypergeometric series. The motivation for his work was to develop the area of character sums and their evaluations through parallels with the theory of hypergeometric functions. The basis for this parallel was the analogy between Gauss sums...

متن کامل

A 45 Integers 12 ( 2012 ) Supercongruences for a Truncated Hypergeometric Series

The purpose of this note is to obtain some congruences modulo a power of a prime p involving the truncated hypergeometric series p−1 � k=1 (x)k(1− x)k (1)k · 1 ka for a = 1 and a = 2. In the last section, the special case x = 1/2 is considered.

متن کامل

Binomial Coefficient–harmonic Sum Identities Associated to Supercongruences

We establish two binomial coefficient–generalized harmonic sum identities using the partial fraction decomposition method. These identities are a key ingredient in the proofs of numerous supercongruences. In particular, in other works of the author, they are used to establish modulo p (k > 1) congruences between truncated generalized hypergeometric series, and a function which extends Greene’s ...

متن کامل

Hypergeometric (super)congruences

The sequence of (terminating balanced) hypergeometric sums an = n ∑ k=0 ( n k )2( n+ k k )2 , n = 0, 1, . . . , appears in Apéry’s proof of the irrationality of ζ(3). Another example of hypergeometric use in irrationality problems is Ramanujan-type identities for 1/π, like ∞ ∑ k=0 ( 2k k )3 (4k + 1) (−1) 26k = 2 π . These two, seemingly unrelated but both beautiful enough, hypergeometric series...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006